
INTEGRATED CIRCUITS

Preliminary specification

2002 Mar 12

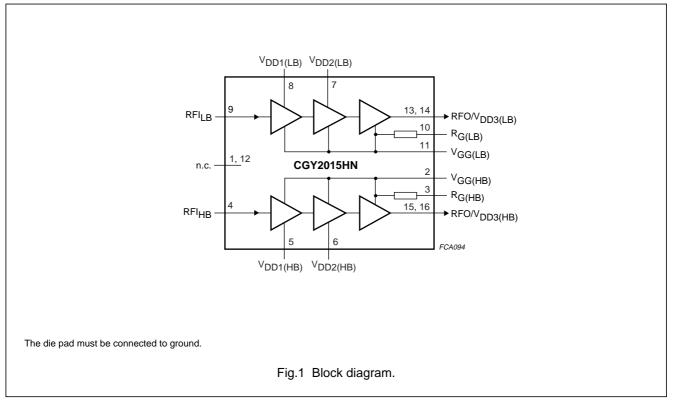
CGY2015

FEATURES

- 3.5 V nominal supply voltage
- Efficiency: 55% in GSM band and 42% in DCS band
- Wide operating temperature range –20 to +85 $^\circ\text{C}$
- HVQFN16 exposed die pad package.

APPLICATIONS

- Dual band system:
 - Low Band (LB) from 880 to 915 MHz hand held transceivers for Extended GSM (E-GSM)
 - High Band (HB) from 1710 to 1785 MHz for DCS and from 1710 to 1910 MHz for DCS/PCS.
- Multi-mode systems: General Packet Radio Service (GPRS) class 1 up to GPRS class 12.


ORDERING INFORMATION

GENERAL DESCRIPTION

The CGY2015 is a dual GaAs Monolithic Microwave Integrated Circuit (MMIC) Power Amplifier (PA). On the same die, one PA is intended for Global System for Mobile communication (GSM), the second PA is intended for Digital Cellular System (DCS) and for Personal Communications Services (PCS).

TYPE	PACKAGE				
NUMBER	NAME DESCRIPTION VERS				
CGY2015HN	HVQFN16	plastic, thermal enhanced very thin quad flat package; no leads; 16 terminals; body $4 \times 4 \times 0.85$ mm	SOT629-1		

BLOCK DIAGRAM

CGY2015

PINNING

SYMBOL	PIN	DESCRIPTION	
n.c.	1	not connected	
V _{GG(HB)}	2	DCS/PCS power amplifier gates	
R _{G(HB)}	3	DCS/PCS power amplifier gates through a resistor	
RFI _{HB}	4	DCS/PCS power amplifier input	
V _{DD1(HB)}	5	DCS/PCS first stage supply voltage	
V _{DD2(HB)}	6	DCS/PCS second stage supply voltage	
V _{DD2(LB)}	7	GSM second stage supply voltage	
V _{DD1(LB)}	8	GSM first stage supply voltage	
RFI _{LB}	9	GSM power amplifier input	
R _{G(LB)}	10	GSM power amplifier gates through a resistor	
V _{GG(LB)}	11	GSM power amplifier gates	
n.c.	12	not connected	
RFO/V _{DD3(LB)}	13	GSM PA output and third stage supply voltage	
RFO/V _{DD3(LB)}	14	GSM PA output and third stage supply voltage	
RFO/V _{DD3(HB)}	15	DCS/PCS PA output and third stage supply voltage	
RFO/V _{DD3(HB)}	16	DCS/PCS PA output and third stage supply voltage	
	die pad	ground	

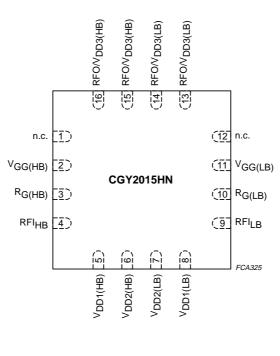
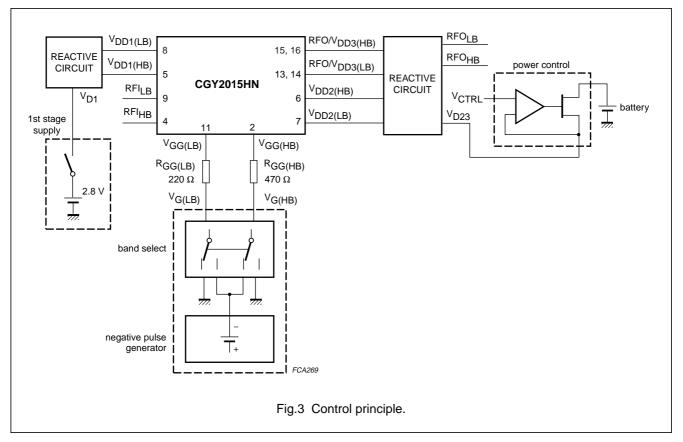


Fig.2 Pin configuration (top view).

CGY2015

FUNCTIONAL DESCRIPTION


Operating conditions

The CGY2015 is designed to meet the European Telecommunication Standards Institute (ETSI) specification *"ETS 300 577"*.

Control

Power amplifier

The GSM and DCS/PCS power amplifiers consist of three cascaded gain stages with an open-drain configuration. Each drain has to be DC supplied through an adequate reactive circuit.

Table 1Operating mode

VOLTAGE	STANDBY	GSM	DCS/PCS
V _{D1}	0 V	2.8 V	2.8 V
V _{D23}	0 V	0 V to V _{BAT}	0 V to V _{BAT}
V _{G(LB)}	0 V	0 V	≤–1.5 V
V _{G(HB)}	0 V	≤–1.5 V	0 V

The output power is controlled by V_{D23} .

The band select switches off the non active PA.

The value of $R_{GG(LB)}$ and $R_{GG(HB)}$ have been optimized for the low power efficiency.

This principle can be implemented with the Philips companion chip UBA1711 or with a discrete control circuit (see Fig.19).

CGY2015

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _D	supply voltage pins 5 to 8 and 13 to 16		-	5.2	V
T _{j(max)}	maximum operating junction temperature		-	150	°C
P _{tot}	total continuous power dissipation		_	2	W
Pi	input power	note 1	_	10	dBm
T _{stg}	storage temperature		-55	+150	°C

Note

1. For GSM PA or for DCS/PCS PA.

HANDLING

Do not operate or store near strong electrostatic fields.

Mets class 0 ESD test requirements Human Body Model (HBM), in accordance with *"EIA/JESD22-A114-A"* (October 1997) and class A ESD test requirements Machine Model (MM), in accordance with *"EIA/JESD22-A115-A"* (October 1997).

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	note 1	30	K/W

Note

1. In free air, under operating conditions, on Philips evaluation board (see Fig.16).

CGY2015

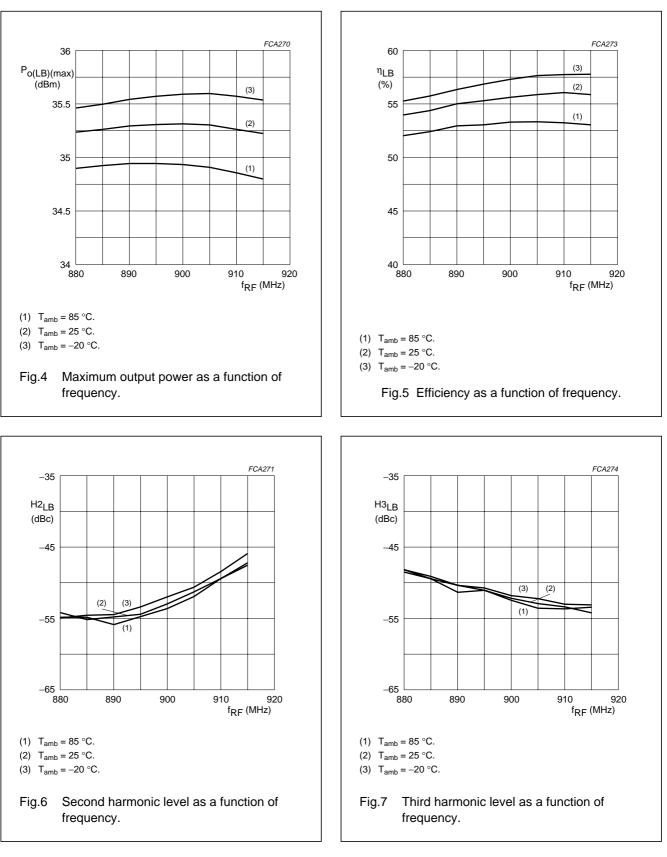
DC CHARACTERISTICS

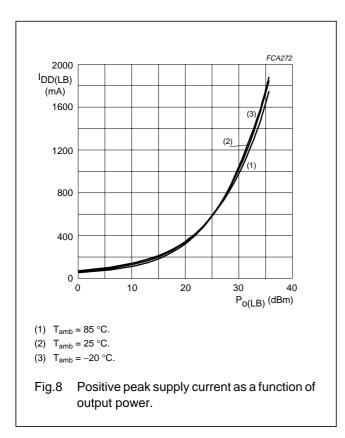
 V_{D1} = 2.8 V; T_{amb} = 25 °C; peak current value during burst; measured and guaranteed on Philips evaluation board (see Fig.16); unless otherwise specified.

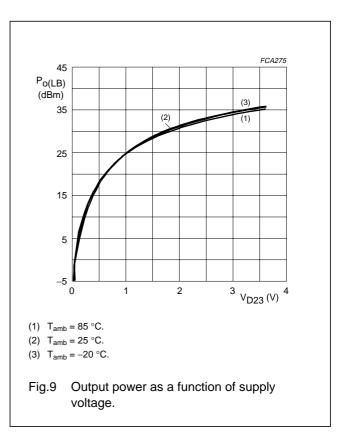
SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
I _{DD(LB)}	GSM positive peak supply current	$\begin{array}{l} {{P_{i\left({LB} \right)} = 5\;dBm;\;V_{D23} = 3.5\;V;}}\\ {{V_{G\left({LB} \right)} = 0\;V;\;V_{G\left({HB} \right)} \le - 1.5\;V} \end{array}$	1.6	-	A
I _{DD(HB)}	DCS/PCS positive peak supply current	$\begin{array}{l} {{P_{i(HB)}}=5\;dBm;\;V_{D23}=3.5\;V;} \\ {{V_{G(HB)}}=0\;V;\;V_{G(LB)}\leq -1.5\;V} \end{array}$	1.2	-	A
I _{DD(lp)(LB)}	GSM low power positive supply current	$\begin{array}{l} P_{i(LB)}=5 \text{ dBm}; V_{D23} \text{ adjusted for} \\ P_{o(LB)}=15 \text{ dBm}; V_{G(LB)}=0 V; \\ V_{G(HB)}\leq -1.5 V \end{array}$	200	300	mA
I _{DD(lp)(HB)}	DCS/PCS low power positive supply current	$\begin{array}{l} P_{i(HB)}=5\ dBm;\ V_{D23}\ adjusted\ for\\ P_{o(HB)}=15\ dBm;\ V_{G(HB)}=0\ V;\\ V_{G(LB)}\leq -1.5\ V \end{array}$	200	300	mA
I _{GG(LB)}	GSM negative gate current		0.8	2	mA
I _{GG(HB)}	DCS/PCS negative gate current		0.8	2	mA

Note

1. See Section "Power control" for more details.


AC CHARACTERISTICS (LOW BAND PA)

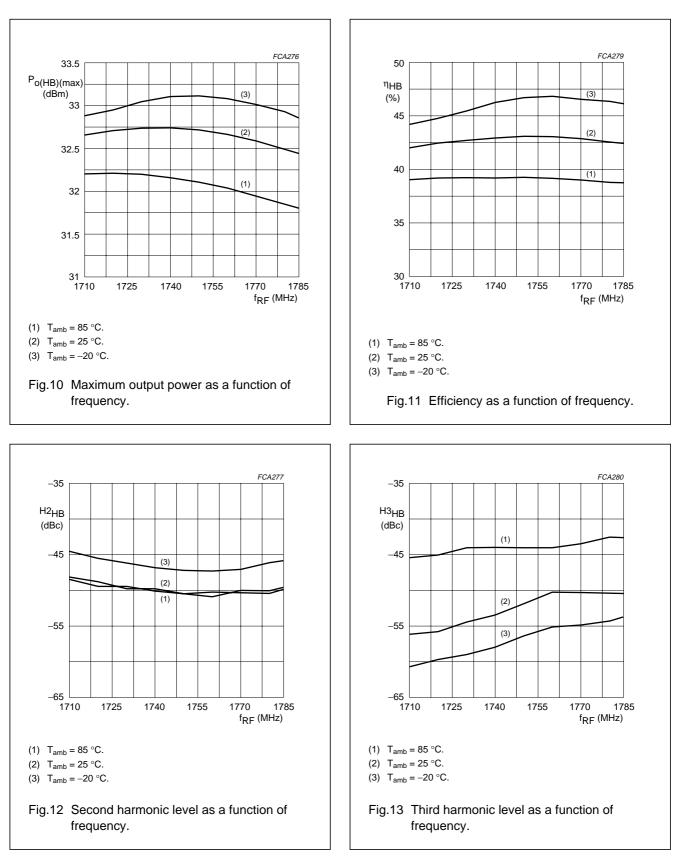

 $V_{D23} = 3.5 \text{ V}; V_{D1} = 2.8 \text{ V}; T_{amb} = 25 \text{ °C}; f_{RF} = 880 \text{ to } 915 \text{ MHz} \text{ (GSM operation)}; P_{i(LB)} = 5 \text{ dBm}; V_{G(LB)} = 0 \text{ V}; V_{G(HB)} \le -1.5 \text{ V}; \text{ measured and guaranteed on Philips evaluation board (see Fig.16); unless otherwise specified.}$

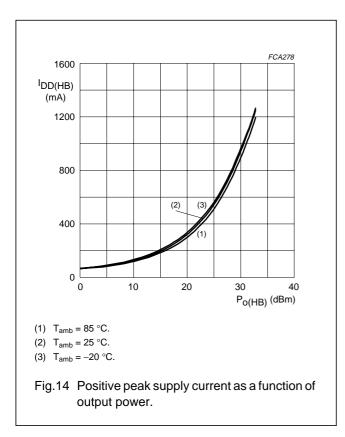

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
P _{o(LB)(max)}	maximum output power		34.5	35	-	dBm
η_{LB}	efficiency		50	55	-	%
P _{o(LB)(off)}	output power in standby mode	V_{D1} = V_{D23} = 0 V; $V_{G(LB)}$ and $V_{G(HB)}$ in high-impedance	-	-30	-	dBm
P _{o(LB)(min)}	minimum output power	V _{D23} = 0 V;	-	-5	-	dBm
N _{RX(LB)}	output noise in RX band	f _{RF} = 925 to 935 MHz	-	-	–117	dBm/Hz
		f _{RF} = 935 to 960 MHz	-	-	-129	dBm/Hz
H2 _{LB}	second harmonic level		-	-45	-40	dBc
H3 _{LB}	third harmonic level		-	-45	-40	dBc
Stab _{LB}	stability	note 1	-	_	-60	dBc
	ruggedness	output VSWR = 10 : 1 for all phases angles	-	note 2	-	

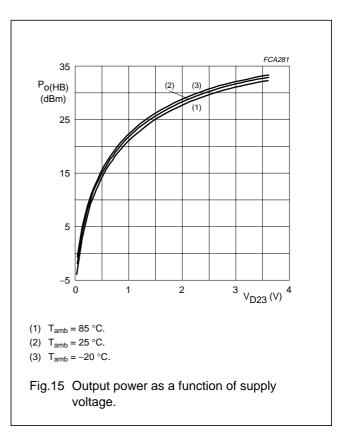
Notes

- 1. The device is adjusted to provide nominal load power into a 50 Ω load. The device is switched off and a 3 : 1 load replaces the 50 Ω load. The device is switched on and the phase of the 3 : 1 load is varied 360 electrical degrees during a 60 seconds test period.
- 2. No circuit damage or performance degradation.

CGY2015

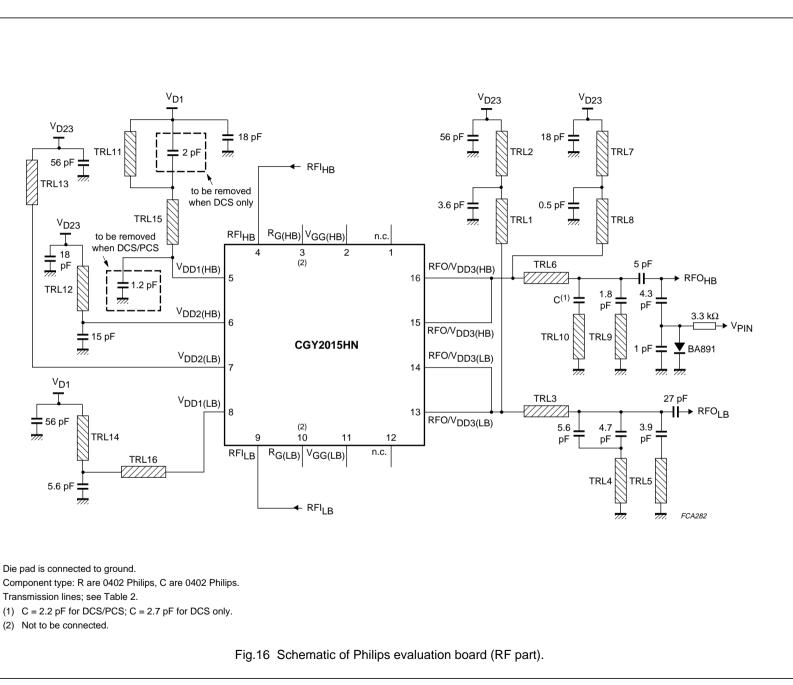

AC CHARACTERISTICS (HIGH BAND PA)


 $V_{D23} = 3.5 \text{ V}$; $V_{D1} = 2.8 \text{ V}$; $T_{amb} = 25 \text{ °C}$; $P_{i(HB)} = 5 \text{ dBm}$; $V_{GHB} = 0 \text{ V}$; $V_{GLB} \le -1.5 \text{ V}$; $f_{RF} = 1710 \text{ to } 1785 \text{ MHz}$ (for DCS operation) or $f_{RF} = 1710 \text{ to } 1910 \text{ MHz}$ (for DCS/PCS operation); measured and guaranteed on Philips evaluation board (see Fig.16); unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
P _{o(HB)(max)}	maximum output power	f _{RF} = 1710 to 1785 MHz	32	32.5	-	dBm
		f _{RF} = 1710 to 1910 MHz	-	32	-	dBm
η _(HB)	efficiency	f _{RF} = 1710 to 1785 MHz	38	42	-	%
		f _{RF} = 1710 to 1910 MHz	-	38	-	%
P _{o(HB)(off)}	output power in standby mode	$V_{D1} = V_{D23} = 0$ V; V_{GLB} and V_{GHB} in high impedance	-	-30	-	dBm
P _{o(HB)(min)}	minimum output power	V _{D23} = 0 V	-	-5	-	dBm
N _{RX(HB)}	output noise in RX band		-	-	-121	dBm/Hz
α _{HB}	HB isolation when LB is operating	note 1	-	5	-	dBm
H2 _{HB}	second harmonic level	f _{RF} = 1710 to 1785 MHz	_	-45	-40	dBc
		f _{RF} = 1710 to 1910 MHz	_	_	-35	dBc
H3 _{HB}	third harmonic level	f _{RF} = 1710 to 1785 MHz	-	-45	-40	dBc
		f _{RF} = 1710 to 1910 MHz	_	-	-35	dBc
Stab _{HB}	stability	note 2	_	_	-60	dBc
	ruggedness	$f_{RF} = 1710$ to 1910 MHz; output VSWR = 10 : 1 for all phases angles	_	note 3	-	

Notes

- 1. Isolation can be improved to -15 dBm (typical value) with a pin diode switched in the HB output matching.
- 2. The device is adjusted to provide nominal load power into a 50 Ω load. The device is switched off and a 3 : 1 load replaces the 50 Ω load. The device is switched on and the phase of the 3 : 1 load is varied 360 electrical degrees during a 60 seconds test period.
- 3. No circuit damage or performance degradation.


Philips Semiconductors

Preliminary specification

GSM/DCS/PCS power amplifier

APPLICATION INFORMATION (RF PART)

CGY2015

2002 Mar 12

_

 V_{D23}

56 pF 777.

V_{D23}

T

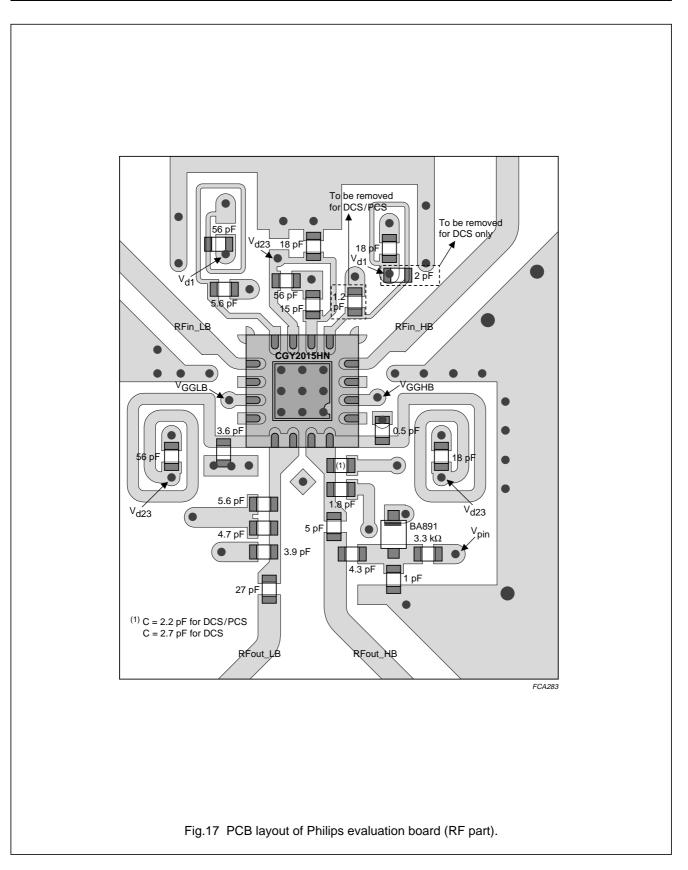
18

TRL12

 V_{D1}

5.6 pF

(2) Not to be connected.


1 56 pF

TRL13

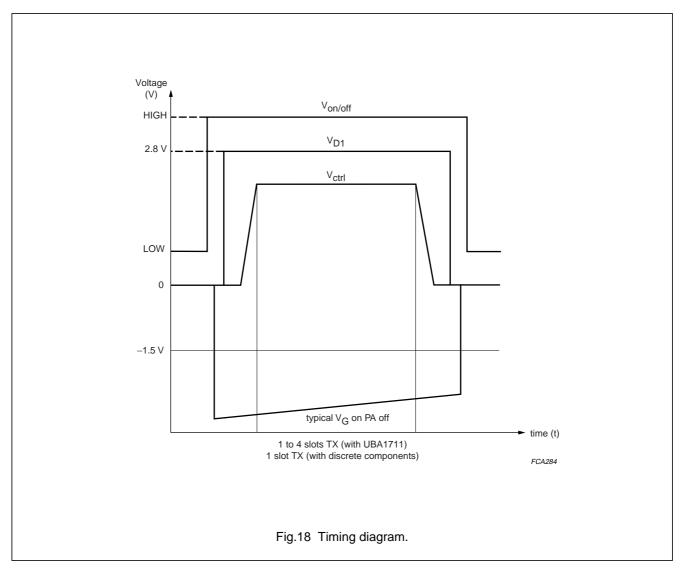
12

TRANSMISSION LINE	WIDTH (μm)	LENGTH (mm)
TRL1	400	1.6
TRL2	400	16.5
TRL3	400	1.7
TRL4	700	1.9
TRL5	700	1.1
TRL6	800	0.8
TRL7	400	16.5
TRL8	400	1.6
TRL9	400	2.0
TRL10	400	1.6
TRL11	150	6.4
TRL12	200	3.2
TRL13	300	1.9
TRL14	150	10.8
TRL15	150	3.5
TRL16	150	3.8

Table 2 Transmission lines (substrate thickness is 400 μm)

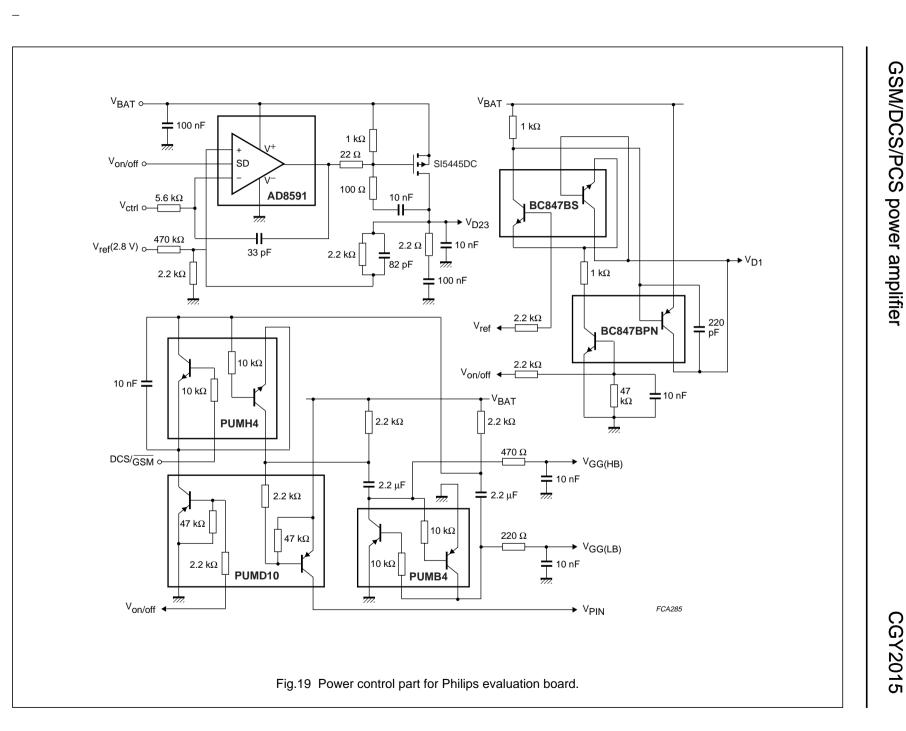
CGY2015

Power control


One solution for power control of the CGY2015 implements the Philips companion chip UBA1711. This device is designed to operate with dual band GaAs FET PA, especially when 50% duty cycle is applied because of:

- Its optimal thermal resistance (typical 30 K/W)
- Its optimized negative voltage generator which ensures 4 TX operation. The maximum value for I_G (see Chapter "DC characteristics") is low enough to guarantee a negative voltage (≤–1.5 V) in these conditions.

Another solution for power control of the CGY2015 uses discrete components (see Fig.19). This solution has been designed to meet 1 TX operation.

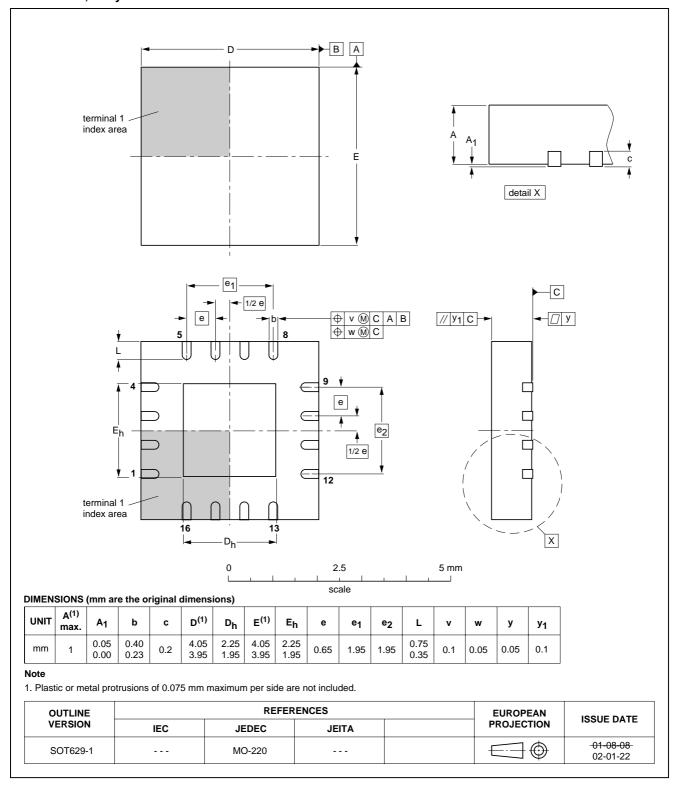

These solutions need external signals:

- V_{BAT}: power supply voltage (3.6 V)
- DCS/GSM: selects the band: DCS operation if the level is HIGH and GSM operation if the level is LOW (TLL levels)
- V_{ref}: 2.8 V reference voltage (only needed for the solution with discrete components)
- Von/off: enables PA supply (TTL levels)
- V_{ctrl}: controls the voltage on second and third stages and then the output power.

2002 Mar 12

16

Philips Semiconductors


Preliminary specification

CGY2015

SOT629-1

PACKAGE OUTLINE

HVQFN16: plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body 4 x 4 x 0.85 mm

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

CGY2015

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD		
FACKAGE	WAVE	REFLOW ⁽¹⁾	
BGA, HBGA, LFBGA, SQFP, TFBGA	not suitable	suitable	
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	not suitable ⁽²⁾	suitable	
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable	

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

CGY2015

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

CGY2015

NOTES

CGY2015

NOTES

CGY2015

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

403506/01/pp24

Date of release: 2002 Mar 12

Document order number: 9397 750 09143

SCA74

Let's make things better.

Philips Semiconductors